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Abstract
In this paper, we have considered the q deformation of the AKNS-D hierarchy,
proved the bilinear identity and obtained the τ function of the q deformed
AKNS-D hierarchy.

PACS numbers: 02.30.-f, 02.30.Ik, 05.45.Yv

1. Introduction

Recently, more and more attention has been paid to the discrete integrable system. For
example, one can find good reviews and a large number of references about discrete integrable
systems in the book edited by Bobenko and Seiler [1]. One topic discussed is the semi-
discretization of an integrable system. It is an integrable system with many variables and one
discrete variable. There are lot of discussions about the q deformation of KdV and the KdV
hierarchy, q deformation of the KP hierarchy, their solutions and τ functions as well as other
properties [2–12], where τ functions of the q KP hierarchy [9, 10] could be constructed from
the τ functions of the classical KP hierarchy by making an appropriate shift. In this paper, we
consider the AKNS-D hierarchy which was proposed by Dickey [14] and its q deformation.

This paper is organized as follows: in section 2, we will give a brief review of the AKNS-D
hierarchy to make this paper self-contained. In section 3, we will give the definition of the
q AKNS-D hierarchy, their Baker functions and the bilinear identity. The derivation of the τ

functions is discussed in section 4.

2. Brief review of the AKNS-D hierarchy

In this section, we briefly review the general idea of the AKNS-D hierarchy. The details can
be found in [13–15].

Let

L = ∂ + U − zA (1)

0305-4470/01/459641+11$30.00 © 2001 IOP Publishing Ltd Printed in the UK 9641

http://stacks.iop.org/ja/34/9641


9642 S Wang et al

where ∂ = ∂
∂x

, A = diag(a1, a2, . . . , an), U is a matrix function of x with uii = 0 and rank n.
The resolvent of L is defined as a series:

R =
∞∑

i=0

R(i)z−i (2)

which commutes with L, i.e. [L, R] = 0.
The elements of R(i) are all differential polynomials of uij . The set of all resolvents forms

an n-dim algebra over the field of constant diagonal series C(z) = ∑∞
i=0 Ciz

−i .The basis of
resolvents are Rα

Rα = Eα +
∞∑

j=1

R(j)
α z−j (3)

where Eα is the matrix with the only non-zero element at the αα position. All elements of
R

(j)
α , j > 0, are differential polynomials without constant terms. The basic resolvents satisfy

the relation RαRβ = δαβRβ . Take

Bkα = (zkRα)+ =
k∑

j=0

R(j)
α zk−j . (4)

The subscript + means taking non-negative powers of z. The AKNS hierarchy is the set of
equations

∂kαL = [Bkα, L] (5)

where ∂kα means ∂
∂tkα

, and tkα, k = 0, 1, 2, . . . , α = 1, 2, . . . , n is a set of time variables.
In these equations, the operators ∂ and ∂kα are not independent. They have the following
relation [13]:

∂ =
n∑

α=1

aα∂1α. (6)

Denote the wavefunction by

ŵ(z) = I +
∞∑

j=1

wj z−j . (7)

It is well known that the operator L can be represented in the following form:

L = ŵ(z)(∂ − zA)ŵ(z)−1. (8)

Then the basic resolvents are given by

Rα = ŵ(z)Eαŵ(z)−1 (9)

and the formal Baker function is

w = ŵ(z) exp

( ∞∑
k=0

n∑
α=0

zkEαtkα

)
. (10)

With the formal Baker function, the operator L and the resolvent can be written as

L = w∂w−1 (11)

Rα = wEαw−1. (12)

The equations of the hierarchy are equivalent to

L(w) = 0
∂kαw = Bkαw or ∂kαŵ = −(zkRα)−ŵ.

(13)
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To avoid some possible confusion, from now on we use L(f ) or (Lf ) to denote an operator L

acting on a function f and use Lf to note multiplication by two operator.
The adjoint Baker function is defined as w∗ = (w−1)T which satisfies the adjoint equation

L∗(w∗) = 0 (14)

where L∗ = −∂ + (U − zA)T .

Proposition 1 (Bilinear identity). A bilinear relation

resz[zl(∂k1α1 . . . ∂ksαs
w)(w∗)T ] = 0

holds, where l = 0, 1, . . . , and (k1α1), . . . , (ks, αs) is any set of indices. Conversely, let two
functions

w =
(

I +
∞∑

i=1

wiz
−i

)
exp

( ∞∑
k=0

n∑
α=1

zkEαtkα

)

w∗ =
(

I +
∞∑

i=1

w∗
i z−i

)
exp

(
−

∞∑
k=0

n∑
α=1

zkEαtkα

)

satisfy the above bilinear identity. Then w and w∗ are, respectively, the Baker function and
the adjoint Baker function of an operator L which satisfies the hierarchy equation.

3. q AKNS-D hierarchy

3.1. Some useful results of q calculation

In this section, we will give some basic definitions for the q difference calculation and some
useful relations for the calculation, without proof. Details can be found in [10, 17].

First, we introduce two operators:

Df (x) := f (qx) (15)

Dqf (x) := f (qx) − f (x)

x(q − 1)
. (16)

The first difference between the q difference and ordinary differential calculus is Leibnitz’s
law. The q Leibnitz law is

Dq(fg) = (Df ) · (Dqg) + (Dqf ) · g

= f · (Dqg) + (Dqf ) · (Dg). (17)

Using this Leibnitz law, it is easy to show the following lemma:

Lemma 1.

Dn
q (fg) =

∞∑
k=0

(Cn
k )q(Dn−kDk

qf )Dn−k
q g (18)

Dm
q Dn

q f = Dm+n
q f (19)

where (Cn
k )q = (1−qn)(1−qn−1)···(1−qn−k+1)

(1−q)(1−q2)···(1−qk)
and (Cn

0 )q = 1.

Another useful fact about the q difference is the q exponential function. It is defined as

expq(x) :=
∞∑

k=0

(1 − q)k

(q; q)k

xk (20)
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where (a; q)k := ∏k−1
s=0(1 − aqs) and (a; q)0 = 1. A useful feature of this function is that the

behaviour of expq(x) acted on by the q difference operator is just like the exponential function
acted on by the ordinary differential operator, i.e.

Dq expq(zx) = z expq(zx). (21)

Two other useful relations for expq(x) are

expq(x) = exp

( ∞∑
k=1

(1 − q)k

k(1 − qk)
xk

)
(22)

(expq(x))−1 = exp1/q(−x). (23)

Using the above relation, direct calculation gives

Lemma 2.

expq(zAx) exp

( ∞∑
k=0

n∑
α=1

zkEαtkα

)
= exp

( ∞∑
k=0

n∑
α=1

zkEαt ′
kα

)

where t ′
kα = tkα + (1−q)k

k(1−qk)
(aαx)k and A = diag(a1, a2, . . . , an).

For later convenience, we define the q commutator [, ]q as

[A, B]q = (DA) · B − B · A. (24)

This bracket can be seen as the q deformation of the ordinary commutator. The operator D
comes from the q Leibnitz law.

Introduce a L2-metric on the space of n-dim matrix functions as

〈A, B〉 := tr
∫ +∞

−∞
A · B dx. (25)

Using this inner product, we can define the dual operator as usual:

〈f, (g)P ∗〉 := 〈P (f ), g〉. (26)

It is easy to show that (Dq)∗ = (− 1
q
)D1/q .

3.2. q AKNS-D hierarchy

Let Lq = Dq − zA + U , where A = diag(a1, a2, . . . , an), U is an n-dim matrix function of x

with uii = 0, for any i. Like the AKNS-D hierarchy, we define the resolvent R for Lq as

R =
∞∑

i=0

R(i)z−i

[R, Lq]
q

= 0

(27)

i.e.

DqR − [R, (U − zA)]q = 0. (28)

Submitting the formal expression of R into equation (28), we can get

DqR(j) − [R(j), U ]q + [R(j+1), A]q = 0 (29)

[R(0), A]q = 0. (30)

Lemma 3. The set of all resolvents R form an algebra over the field of the formal series
c(z) = ∑∞

i=0 ciz
−i and we denote it by �.
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Proof. First, it is easy to see that, if R1, R2 satisfy equation (28), then we have
[c1(z)R1 + c2(z)R2, Lq]q = 0.

Second, if R1, R2 are two resolvents, then

[R1R2, Lq]
q

= (DR1)[R2, Lq]q + [R1, Lq]qR2 = 0.

So the set of all resolvents form an algebra. �
We define the q wavefunction ŵ as

ŵq := I +
∞∑

k=1

wkz−k (31)

which satisfies

Lq = (Dŵq) · (Dq − zA) · ŵ−1
q . (32)

The existence of ŵq is obvious, because we can rewrite the above equation as

Lqŵq = (Dŵq) · (Dq − zA). (33)

Using expression (31) and following the method in the classical case, i.e. the AKNS-D
hierarchy, we can obtain these ŵj .

Lemma 4. Rα = ŵqEαŵ−1
q is a resolvent which has the following property:

Rα · Rβ = δαβRβ.

Proof.

[Rα, Lq]
q

= (Dŵq)Eα(Dŵ−1
q ) · Lq − Lq · ŵqEαŵ−1

q

= (Dŵq)Eα(Dŵ−1
q ) · (Dŵq)(Dq − zA)ŵ−1

q

−(Dŵq)(Dq − zA)ŵ−1
q · ŵqEαŵ−1

q

= 0

and

RαRβ = ŵqEαŵ−1
q · ŵqEβŵ−1

q

= ŵqEαEβŵ−1
q

= δαβRβ.

�
Note Bkα = (zkRα)+, B̄kα = (zkRα)−.

Definition 1. The q AKNS-D hierarchy is defined in the Lax pair form as follows:

Lqŵq = (Dŵq)(Dq − zA)

∂kαŵq = −B̄kαŵq .
(34)

Lemma 5. From the above definition, we have

∂kαLq = [Bkα, Lq]
q
.

Proof. Since Lq = (Dŵq)(Dq − zA)(ŵ−1
q ), then

∂kαLq = (∂kαDŵq)(Dq − zA)ŵ−1
q + (Dŵq)(Dq − zA)(∂kαŵ−1

q )

= −(DB̄kα) · (Dŵq)(Dq − zA)(ŵ−1
q ) + (Dŵq)(Dq − zA)ŵ−1

q B̄kα

= [−B̄kα, Lq]
q

= [Bkα − zkRα, Lq]
q

= [Bkα, Lq]
q
.

�
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Lemma 6.

∂kαRβ = [Bkα, Rβ].

Proof.

∂kαRβ = ∂kα(ŵqEβ)ŵ−1
q

= −B̄kαŵqEβŵ−1
q + ŵqEβŵ−1

q B̄kα

= −[B̄kα, Rβ]

= [Bkα, Rβ].

�
Using this relation, we can easily prove that

∂kαBlβ − ∂lβBkα = [Bkα, Blβ]. (35)

Lemma 7. Every R can be fixed by its zero-order term and Rα form a basis of �.

Proof. Using equation (30), we can find that R(0) must be a diagonal matrix. (Here we require
that all functions we deal with are bounded and continuous everywhere as a function of x.)
Because of equation (29), we can solve every R(j) order by order. The only freedom left is
the constant diagonal part of R(j) which can be chosen to be zero. So the linear independent
solutions are those whose zero-order term is Eα , that is why Rα form a basis of �. �
Definition 2. The q AKNS-D hierarchy is defined as

∂kαLq = [Bkα, Lq]
q
.

Theorem 1. Definitions 1 and 2 are equivalent.

Proof. Lemma 5 show that definition 1 can lead to definition 2. Now, we want to prove the
converse direction. For any α, β,

[∂kαRβ − [Bkα, Rβ], Lq]
q

= [∂kαRβ, Lq]
q

− [[Bkα, Rβ], Lq]
q
.

But

[∂kαRβ, Lq]
q

= ∂kα[Rβ, Lq]
q

− [Rβ, ∂kαLq]
q

= −[Rβ, ∂kαLq]
q

= −[Rβ, [Bkα, Lq]
q
]
q

= [[Bkα, Rβ], Lq]
q

which gives

[∂kαRβ − [Bkα, Rβ], Lq]
q

= 0

which means ∂kαRβ − [Bkα, Rβ] is a resolvent. We have known that all Rα form a basis of �.
Then we can express ∂kαRβ − [Bkα, Rβ] by

∂kαRβ − [Bkα, Rβ] =
∑

α

cα(z)Rα.

Taking γ = β, we have

(∂kαRβ − [Bkα, Rβ])Rγ = −Rβ∂kαRγ + RβBkαRγ

= −Rβ∂kαRγ + RβBkαRγ − RβRγ Bkα

= −Rβ(∂kαRγ − [Bkα, Rγ ])

= −c̃βRβ.
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On the other hand, we also know

(∂kαRβ − [Bkα, Rβ])Rγ =
∑

α

cαRαRγ = cγ Rγ .

Because Rγ , Rβ are linear independent, we get c̃β = cγ = 0, so ∂kαRβ − [Bkα, Rβ] = c(z)Rβ .
But

(∂kαRβ − [Bkα, Rβ])Rβ = ∂kαR2
β − Rβ∂kαRβ − BkαRβ + RβBkαRβ

= ∂kαRβ − BkαRβ + RβBkα − Rβ∂kαRβ − R2
βBkα + RβBkαRβ

= ∂kαRβ − [Bkα, Rβ] − Rβ(∂kαRβ − [Bkα, Rβ])

= 0.

So we get

∂kαRβ − [Bkα, Rβ] = 0.

Based on this result, it is easy to show

∂kαBlβ − ∂lβBkα = [Bkα, Blβ]. (36)

Following the standard method in [13], we can extend the operator ∂kα on wq by requiring
∂kαwq = Bkαwq and equation (36) guarantees [∂kα, ∂lβ] = 0 holds, which means this extension
is well defined, and so we prove the converse direction. �

3.3. Baker function and bilinear identity of the q AKNS-D hierarchy

Define the Baker function as

wq = ŵq · expq(zAx) exp

( ∞∑
k=1

n∑
α=1

zkEαtkα

)
. (37)

Lemma 8.
Lq(wq) = 0

∂kαwq = Bkαwq.
(38)

Proof. Using equation (5), we get

Lq(wq) = Lq

(
ŵq · expq(zAx) exp

( ∞∑
k=1

n∑
α=1

zkEαtkα

))

= Dŵq(Dq − zA) expq(zAx) exp

( ∞∑
k=1

n∑
α=1

zkEαtkα

)

= 0

and

∂kαwq = ∂kα

(
ŵq · expq(zAx) exp

( ∞∑
k=1

n∑
α=1

zkEαtkα

))

= − B̄kαŵq · expq(zAx) exp

( ∞∑
k=1

n∑
α=1

zkEαtkα

)

+ŵqzkEα expq(zAx) exp

( ∞∑
k=1

n∑
α=1

zkEαtkα

)

= − B̄kα · wq + zkRα · wq

= Bkα · wq.

�
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Theorem 2 (Bilinear identity).

(i) If wq is a solution of equation (38), it satisfies the following identity:

resz

(
zl

(
Dm

q ∂
[λ]
kα wq

) · w−1
q

)
= 0 (39)

for l = 0, 1, 2, . . . , m = 0, 1, ∀[λ] (where ∂
[λ]
kα = ∂k1α1∂k2α2 . . . ∂ksαs

, and
(k1, α1), . . . , (ks, αs) is any set of indices).

(ii) If

wq =
(

I +
∞∑

i=1

wiz
−i

)
expq(zAx) exp

( ∞∑
k=1

n∑
α=1

zkEαtkα

)

w∗
q =

(
I +

∞∑
i=1

w∗
i z−i

)
exp1/q(−zAx) exp

(
−

∞∑
k=1

n∑
α=1

zkEαtkα

)

and they satisfy the following identity:

resz(z
lDm

q ∂
[λ]
kα wq · (w∗

q)t ) = 0 (40)

for l = 0, 1, 2, . . . , m = 0, 1, ∀[λ], then we have

(1) (w−1
q )t = w∗

q .
(2) wq is a solution of equation (38).

Proof.

(i) If wq is a solution of the q AKNS hierarchy, we have

∂kαwq = Bkαwq.

So ∂
[λ]
kα wq = f (Bkα) · wq , where f (Bkα) is a differential polynomial of Bkα . It is

easy to see that (f (Bkα))+ = f (Bkα). Furthermore, from equation (38), we also know
Dqwq = (zA − U) · wq . Then for ∀l � 0 and ∀[λ]

resz(z
lDq∂

[λ]
kα wq · (wq)−1)

= resz(z
l(Dqf (Bkα))wq · w−1

q ) + resz(z
l(Df (Bkα)) · (zA − U)wq · w−1

q )

= resz(z
l(Dqf (Bkα)) + zl(Df (Bkα))(zA − U))

= 0.

(ii) First, choosing m = [λ] = 0, equation (40) gives

resz(z
lwq · (w∗

q)t ) = 0

for ∀l � 0. This means that wq · (w∗
q)t does not contain a negative power term. From

the formal expression of wq and w∗
q , we know that it also does not contain positive power

terms and the zero-order term is I , so we get (w−1
q )t = w∗

q .

Second, from the definition of the Baker function, we obtain

∂kαwq − Bkαwq = (∂kαŵq) expq(zAx) exp

( ∞∑
k=1

n∑
α=1

zkEαtkα

)

+ŵq expq(zAx) exp

( ∞∑
k=1

n∑
α=1

zkEαtkα

)
zkEα − (zkRα)+wq

= (∂kαŵq) expq(zAx) exp

( ∞∑
k=1

n∑
α=1

zkEαtkα

)
+ zkwqEαw−1

q · wq − (zkRα)+wq

= (∂kαŵq + (zkRα)−ŵq) expq(zAx) exp

( ∞∑
k=1

n∑
α=1

zkEαtkα

)
.
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From equation (40), we have

resz(z
l(∂kα − Bkα)wq · (w∗

q)t ) = 0.

But

(∂kα − Bkα)wq · w−1
q = (∂kαŵq + (zkRα)−ŵq) · ŵ−1

q .

So we can see it contains no positive power terms and the bilinear identity is

resz(z
l(∂kαŵq + (zkRα)−ŵq) · ŵ−1

q ) = 0

for ∀l � 0, which yields

∂kαŵq + (zkRα)−ŵq = 0.

This equation is equivalent to equation

∂kαwq = Bkαwq.

Define Lq = (Dwq)Dqw−1
q . Simple calculation gives

Lq = Dq − (Dqwq) · w−1
q .

Using the formal expression of wq , direct calculation gives the highest-order term of Dqwq ·w−1
q

is zA and the bilinear identity (39) guarantees that Dqwq ·w−1
q does not contain negative power

terms. We note the zero-order term of Dqwq · w−1
q as −U . Then we get

Lq = Dq + zA − U.

So such wq satisfies equation (38). �

4. The τ function of the q AKNS-D hierarchy

In [10], Iliev gives us a way to construct the τ function of the q KP hierarchy. The main idea
is to ‘q-shift’ the time variables tkα of the classical KP hierarchy’s τ function and to prove that
the Baker function constructed from this kind of τ function satisfies the bilinear identity of the
q KP hierarchy. In this section, we will generalize Iliev’s method to the q AKNS-D hierarchy.

Definition 3. The q shift of tkα is defined as

tkα �−→ tkα +
(1 − q)k

k(1 − qk)
(aαx)k

and also as t + [Ax]q , we note for convenience.

Definition 4. A matrix function τ(t) is called a τ function of the q-AKNS-D hierarchy if it
satisfies

ŵαβ(t, z) = z−1 ταβ(. . . , tkβ − 1
k
z−k, . . .)

ταα(t)

ŵαα(t, z) = ταα(. . . , tkα − 1
k
z−k, . . .)

ταα(t)

(41)

where ŵ(t; z) is a wavefunction of the q AKNS-D hierarchy.

Theorem 3 (The τ function of the q AKNS-D hierarchy). If τ(t) is a τ function of the
classical AKNS-D hierarchy, then

τq(t; x) := τ(t + [Ax]q)

is a τ function of the q AKNS-D hierarchy.
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Proof. In [14], Dickey gives some τ functions of the AKNS-D hierarchy. To construct the
Baker function, they have the following form:

ŵWαβ(t, z) = z−1 τWαβ(. . . , tkβ − 1
k
z−k, . . .)

τW (t)

ŵWαα(t, z) = τW (. . . , tkα − 1
k
z−k, . . .)

τW (t)

(42)

which is similar to the KP hierarchy (more details can be found in [14–16]).
Since we have defined the τq function as

τq(t; x) := τ(t + [Ax]q)

using definition 4, equation (37) and lemma 2, it is easy to see that the function wq is just the
q shift of the classical Baker function, i.e.

wq(t; x) = w(t + [Ax]q).

The classical Baker function w satisfies the classical bilinear identity

resz(z
l(∂

[λ]
kα w) · w−1) = 0 for ∀ l � 0, ∀ [λ]. (43)

We want to show that the function wq satisfies the q bilinear identity

resz(z
l(Dq∂

[λ]
kα wq) · w−1

q ) = 0.

Submitting the expression for wq into the q bilinear identity, we get

resz(z
l(Dq∂

[λ]
kα w(t + [Ax]q)) · w−1(t + [Ax]q)

= [resz(z
l(∂

[λ]
kα w(t + [Aqx]q)) · w−1(t + [Ax]q)

−resz(z
l(∂

[λ]
kα w(t + [Ax]q)) · w−1(t + [Ax]q)] · 1

x(q − 1)
. (44)

Taking t ′ = t + [Ax]q , the classical bilinear identity equation (43) shows that the second term
on the right-hand side of the above equation is zero.

The first term of equation (44) is

1

x(q − 1)
[resz(z

l(∂
[λ]
kα w(t + [Aqx]q)) · w−1(t + [Ax]q)].

For convenience, we denote (1−q)k

k(1−qk)
(aαqx)k as x

q

kα and (1−q)k

k(1−qk)
(aαx)k as xkα . Using the Taylor

expansion of w(t + [Ax]q) at t + [Ax]q , we get

1

x(q − 1)
[resz(z

l(∂
[λ]
kα w(t + [Aqx]q)) · w−1(t + [Ax]q))]

= 1

x(q − 1)

[
resz(z

l(∂
[λ]
kα w(t + [Ax]q)) · w−1(t + [Ax]q))

+
∑

l,β,[η]

resz(z
l(∂

[λ]
kα ∂

[η]
lβ w(t + [Ax]q)) · w−1(t + [Ax]q)) · (x

q

lβ − xlβ)[η]

]
. (45)

Every term in the above equation has the following form:

(x
q

lβ − xlβ)[η]

x(q − 1)
resz(z

l(∂
[λ]
kα ∂

[η]
lβ w(t + [Ax]q)) · w−1(t + [Ax]q))

where the ∂
[η]
lβ and the (x

q

lβ − xlβ)[η] come from the Taylor expansion. The classical bilinear
identity of the AKNS hierarchy makes sure that this kind of term is zero, for any [λ], [η] and
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l � 0, so we find that the first term of equation (44) is also zero. That means the Baker function
wq satisfies the q bilinear identity. �

Furthermore, comparing both sides of the Taylor expansion of equation (44), we can see
that the Dq and the ∂kα are not independent, and we have the following relation:

Dq = 1

x(q − 1)

∑
l,β,η

c([η])(xq

lβ − xlβ)[η]∂
[η]
lβ

=
∑

β

aβ∂1β + O(q − 1) (46)

where c([η]) is the constant coming from the Taylor expansion. When q → 1, we can get the
relation

∂ =
∑

β

aβ∂1β

which holds for the classical AKNS hierarchy.
In this paper, we have presented some results which may be regarded as a preliminary

step to gaining a better understanding of the q deformation of a classical integrable system.
Many questions remain to be addressed. Perhaps the most straightforward one is whether it
is possible to generalize the present work to the mcKP hierarchy, because Dickey has pointed
out [15] that the AKNS-D hierarchy is a special case of the mcKP hierarchy. Furthermore,
the Grassmannian of the q deformation should also be considered. We will consider those
problems in future papers.
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